Mencari Keliling Lingkaran Jika Diketahui Luas Lingkaran
Konsep Jari-Jari dan Diameter Lingkaran
Jari-jari dan diameter rupanya masih sering bikin sebagian oleng. Alias, nggak teliti saat mengerjakan soal. Akibatnya, banyak juga yang tertukar antara rumus jari-jari dan rumus diameter.
Padahal, keduanya sangat berbeda, lho, Skollamate. Memang sama-sama unsur lingkaran yang nggak jauh dari titik pusat, tapi jari-jari dan diameter memiliki definisi yang berbeda, yakni:
Nah, sudah lebih tercerahkan tentang perbedaan jari-jari dan diameter? Kalau belum, simak contoh soalnya berikut ini, deh.
Diketahui panjang diameter sebuah lingkaran adalah 20 cm, berapa jari-jarinya?
Jari-jari dari sebuah sebuah lingkaran dengan panjang diameter 20 cm adalah 10 cm.
Nah, itu dia contoh soal untuk mencari jari-jari jika yang diketahui adalah ukuran diameternya. Sekarang, coba kita balik dengan contoh berikut.
Diketahui panjang jari-jari sebuah lingkaran adalah 16 cm, berapa diameternya?
Diameter dari sebuah sebuah lingkaran dengan panjang jari-jari 16 cm adalah 32 cm.
Apakah sudah cukup jelas? So pasti sudah terasa menyenangkannya sampai sini, ya? Tapi, nggak cukup sampai di pembahasan jari-jari dan diameter. Ada yang makin menantang dan seru terkait rumus lingkaran lainnya, yaitu cara mencari tahu rumus keliling lingkaran dan luas lingkaran.
Contoh Soal Perhitungan Keliling Lingkaran
Melansir smpn3payakumbuh.sch.id, berikut contoh soal dan pembahasan keliling lingkaran:
Hitunglah keliling lingkaran yang mempunyai diameter 15 cm dengan π = 3,14.
Keliling = πd = 3,14 x 15 cm = 47,1 cm.
Hitunglah diameter lingkaran yang mempunyai keliling 25,12 cm dan π = 3,14.
Jadi, diameter lingkaran tersebut adalah 8 cm.
Tentukan keliling lingkaran yang berdiameter 21 cm dan π = 22/7.
Keliling = πd = 22/7 x 21 cm = 22 x 3 cm = 66 cm.
Tentukan keliling lingkaran yang berdiameter 35 cm dan π = 22/7.
Keliling = πd = 22/7 x 35 cm = 22 x 5 cm = 110 cm.
Tentukan keliling lingkaran yang berdiameter 49 cm dan π = 22/7.
Keliling = πd = 22/7 x 49 cm = 22 x 7 cm = 154 cm.
Tentukan keliling lingkaran yang berdiameter 38,5 cm dan π = 22/7/
Keliling = πd = 22/7 x 38,5 cm = 22 x 5,5 cm = 121 cm.
Tentukan keliling lingkaran yang panjang jari-jarinya 10 cm dan π = 3,14.
Keliling = 2πr = 2 x 3,14 x 10 cm = 62,8 cm.
Tentukan keliling lingkaran yang panjang jari-jarinya 15 cm dan π = 3,14.
Keliling = 2πr = 2 x 3,14 x 15 cm = 94,2 cm.
Tentukan keliling lingkaran yang panjang jari-jarinya 36 cm dan π = 3,14.
Keliling = 2πr = 2 x 3,14 x 36 cm = 226,08 cm.
Tentukan keliling lingkaran yang panjang jari-jarinya 15,5 cm dan π = 3,14.
Keliling = 2πr = 2 x 3,14 x 15,5 cm = 97,34 cm.
Diameter mata uang koin lima ratus rupiah adalah 15 mm. Hitunglah kelilingnya.
Keliling = 2πr = 2 x 3,14 x 15 mm = 94,2 mm.
Diameter sebuah roda mobil adalah 42 cm. Hitunglah keliling roda tersebut.
Keliling = πd = 22/7 x 42 cm = 22 x 6 cm = 132 cm.
Artikel ini disusun bersama
. David Jia adalah seorang Tutor Akademis dan Pendiri LA Math Tutoring, sebuah perusahaan les privat yang berbasis di Los Angeles, California. Dengan lebih dari 10 tahun pengalaman mengajar, David menangani siswa dari segala usia dan kelas dalam berbagai mata pelajaran, serta memberikan konseling penerimaan perguruan tinggi dan persiapan ujian untuk SAT, ACT, ISEE, dan banyak lagi. Setelah mencapai nilai matematika 800 yang sempurna dan nilai bahasa Inggris 690 di SAT, David dianugerahi Beasiswa Dickinson dari Universitas Miami, dan lulus dengan gelar Sarjana Administrasi Bisnis. Selain itu, David bekerja sebagai instruktur video daring untuk perusahaan buku teks seperti Larson Texts, Big Ideas Learning, dan Big Ideas Math. Artikel ini telah dilihat 49.589 kali.
Halaman ini telah diakses sebanyak 49.589 kali.
Suatu percobaan dapat dilakukan untuk menentukan pusat lingkaran tanpa menggunakan alat khusus. Bahkan tidak perlu menggunakan jangka sebagaimana biasanya menggambar lingkaran, tetapi cukup menggunakan benda datar apa saja yang mempunyai sudut siku-siku yang ada di sekitar anda. Misalnya kertas. Berikut cara menentuka pusat lingkaran, pertama melukis diameter-diameternya, kemudian menentukan perpotongan kedua diameter itu.
Penjelasan teknik : Jika dua tali busur bertemu di suatu titik pada keliling lingkaran, dan kedua tali busur itu membentuk sudut siku-siku pada titik tadi, maka garis di hadapan sudut siku-siku itu pastilah garis pelurus () yang tidak lain adalah diameter lingkaran. Bila dua diameter berpotongan, maka perpotongan itulah merupakan pusat lingkaran.
Mata pelajaran matematika tentang geometri mengajarkan rumus bangun datar, termasuk menghitung luas lingkaran. Lingkaran merupakan bangun datar yang memiliki satu sisi lengkung dan membentuk sudut 360 derajat. Jarak setiap titik pada sisi luar lingkaran dengan titik pusat lingkaran adalah sama dan disebut dengan jari-jari (r) atau radius.
Ukuran jari-jari lingkaran sama dengan setengah diameter. Definisi diameter adalah segmen garis pada lingkaran yang melalui pusat lingkaran. Rumus diameter lingkaran yaitu d = 2 × r.
Dalam bangun lingkaran, keliling lingkaran adalah jarak dari suatu titik pada lingkaran dalam satu putaran hingga kembali ke titik semula. Hasil bagi keliling dengan diameter lingkaran akan diperoleh bilangan yang nilainya akan mendekati 3,14159265358979… atau disingkat menjadi 3,14 atau dapat juga menggunakan pembagian 22/7 yang disebut pi (π).
Skollamate, ketika pertama kali mendengar lingkaran, apa yang ada di pikiranmu? Hmm… Ban sepeda, kancing, jam dinding, atau pizza? Betul! Pasti kamu bisa menyebutkan banyak benda berbentuk lingkaran.
Tahukah kamu kalau benda yang kamu sebutkan tadi adalah gerbang dari sebuah konsep ilmu Matematika?
Ya! Tanpa kamu sadari, dulu kamu mengenal lingkaran hanya sebagai jenis “bentuk”. Tapi sekarang, kamu akan mengenal lingkaran lebih jauh lagi sebagai salah satu dari konsep Matematika, yaitu “bangun datar”. Menarik, kan?
Nggak sebatas bentuknya melingkar, kamu akan lebih tau serba-serbi tentang lingkaran. Kamu juga bakal ketemu rumus lingkaran yang nggak cuma ada satu. Penasaran mau pelajarin lebih lanjut? Yuk, baca di artikel ini!
Rumus Keliling Lingkaran
Merujuk pada Buku Kumpulan 100 Soal Hots dan Pembahasan Bangun Datar dari Penerbit CV Madani Jaya, lingkaran mempunyai sifat-sifat meliputi terdapat sebuah titik pusat, terdiri dari satu sisi, tidak memiliki titik sudut dan jumlah sudutnya 360 derajat, mempunyai jari-jari (r) dan diameter (d), serta simetri lipat dan simetri putar tidak terhingga.
Baca berita dengan sedikit iklan, klik di sini
Adapun rumus keliling lingkaran sebagai berikut:
Contoh Soal Keliling Lingkaran 2
Jika garis tengah sebuah lingkaran sepanjang 20 cm, berapa keliling lingkaran tersebut?
Garis tengah = diameter = d = 20 cmKeliling lingkaran = πdK = 3,14 x 20 cmK = 62,8 x cm
Maka, jawaban yang benar adalah 62,8 cm
Nah, itu dia cara menghitung keliling lingkaran beserta contoh soalnya. Yuk, coba latihan menggunakan rumus keliling lingkaran !
Rumus Keliling Lingkaran
Sebuah lingkaran membentuk garis lengkung dengan panjang tertentu yang disebut keliling.
Rumus keliling lingkaran adalah K = 2 x π x r atau K = π x d
K: Keliling lingkaran
r: Jari-jari lingkaran
Adapun rumus Keliling ¾ Lingkaran adalah K = r + r + busur 3/4 lingkaran atau K = 2r + (¾ x π x d)
Sebuah lingkaran mempunyai diameter 28 cm maka keliling lingkaran tersebut adalah…
Maka, hasil keliling lingkaran adalah 88 cm².
Sebuah lingkaran memiliki jari-jari 20 cm, berapa keliling lingkaran tersebut?
Sifat-Sifat Lingkaran
Dirangkum dari Buku Ajar Geometri Dan Pengukuran Berbasis Pendekatan Saintifik, sifat-sifat lingkaran adalah:
Demikian pembahasan tentang rumus luas lingkaran, cara menghitung, dan contoh soal.
Rumus keliling lingkaran digunakan untuk menghitung panjang antara titik A di garis keliling lingkaran ke titik itu kembali. Begini cara menghitungnya dengan rumus keliling lingkaran.
Dikutip dari Pasti Bisa Matematika untuk SD/Mi Kelas VI oleh Tim Tunas Karya Guru, kamu perlu mengenal unsur lingkaran untuk menghitung keliling lingkaran. Unsur lingkaran yang digunakan dalam rumus keliling lingkaran yaitu jari-jari atau radius (r) dan diameter atau garis tengah (d).
Unsur lingkaran di antaranya:
SCROLL TO CONTINUE WITH CONTENT
- Titik pusat (titik O), yaitu titik yang terletak di tengah-tengah lingkaran- Jari-jari atau radius (r), yaitu garis dari titik pusat lingkaran ke lengkungan lingkaran- Diameter (garis tengah), yaitu garis lurus yang menghubungkan dua titik pada lengkungan lingkaran dan melalui titik pusat- Busur, yaitu garis lengkung yang terletak pada lengkungan lingkaran dan menghubungkan dua titik sebarang pada lengkungan tersebut- Tali busur, yaitu garis lurus dalam lingkaran yang menghubungkan dua titik pada lengkungan lingkaran- Juring, yaitu luas daerah dalam lingkaran yang dibatasi dua buah jari-jari lingkaran dan sebuah busur yang diapit kedua jari-jari lingkaran tersebut
Rumus Luas Setengah Lingkaran
Adapun rumus luas setengah lingkaran adalah (π x r x r)/2.
Sebuah lingkaran memiliki jari-jari 10 cm, maka luas setengah lingkaran adalah…
Rumus setengah lingkaran adalah (π x r x r)/2.
Maka L = (3,14 x 10 x 10)/2 = 157 cm2.
Jadi, luas setengah lingkaran tersebut adalah 157 cm2.
Unsur dan Bagian Lingkaran
Merujuk pada buku Matematika Plus oleh Husein Tampomas, jar-jari lingkaran adalah ruas garis yang menghubungkan suatu titik pada lingkaran dengan titik pusatnya. Jari-jari lingkaran dapat didefinisikan sebagai jarak suatu titik pada lingkaran dengan titik pusatnya.
Perhatikan gambar berikut.
Unsur dan Bagian Lingkaran (Matematika Plus/Penerbit Yudhistira)
Jari-jari lingkaran dilambangkan dengan r atau R. Pada gambar tersebut, ruas garis OA = r, OB = r, dan ON = r adalah jari-jari lingkaran dengan pusat O.
Tali busur adalah ruas garis yang menghubungkan dua titik pada lingkaran. Pada gambar tersebut, ruas garis CD dan AB adalah suatu tali busur. Diameter atau garis tengah adalah tali busur yang melalui titik pusat lingkaran.
Dalam gambar tersebut, ruas garis AB adalah diameter pada lingkaran O. Dalam hal ini, dikatakan bahwa A dan B berhadapan diametral. Diameter lingkaran dilambangkan dengan d atau D. Hubungan jari-jari (r) dan diameter (d) pada suatu lingkaran dirumuskan sebagai berikut:
r = 1/2 d atau d = 2r
Apotema adalah ruas garis yang ditarik dari titik pusat suatu lingkaran tegak lurus pada sebuah tali busur. Dapat disimpulkan bahwa apotema adalah jarak titik pusat lingkaran dengan tali busurnya. Pada gambar, ruas garis OM adalah suatu apotema.
Anak panah adalah ruas garis perpanjangan apotema sampai pada busur lingkaran. Garis MN dalam gambar diatas adalah suatu anak panah.
Sudut Pusat dan Keliling Lingkaran
Sudut pusat adalah sudut yang dibentuk oleh dua buah jari-jari lingkaran. Ukuran sudut pusat sama dengan dua kali sudut keliling. Sedangkan sudut keliling adalah sudut yang terbentuk dari dua buah tali busur yang berpotongan pada keliling sebuah lingkaran.
Sudut keliling lingkaran dibedakan menjadi: